Elastomer Jaw Couplings RINGFEDER[®] GWE 5106

Servo-Insert coupling with clamping hubs in split hub design

	d ₁ ;d ₂	d _{1k} ;d _{2k} min-max										
Size	min-max i		C ₁	D ₁	D ₃	н	H ₃		К	K ₁	L	L ₃
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
14	5 - 16	5 - 16	11	30		32,5	13	5	11	8	35	
19	6 - 20	6 - 20	25	40		46	16	7	14,5	12	66	
24	10 - 32	10 - 32	30	55		57	18	10,5	20	19	78	
28	10 - 38	10 - 38	35	65		71	20	11,5	24,5	21,5	90	
38	12 - 48	12 - 48	45	80		83	24	15,5	30	31	114	
42	14 - 54	14 - 54	50	95	85	95	26	18	32,5	32	126	28
48	15 - 60	15 - 60	56	105	95	106	28	21	36	38	140	32
55	35 - 74	35 - 74	65	120		120	30	26	45	46,5	160	
65	35 - 80	35 - 80	75	135		135	35	28	50	52	185	
75	30 - 95	30 - 95	85	160		160	40	36	60	65,5	210	

Transmission of the couplings transmissible torque T can not longer be guaranteed for certain with borings < $d_{min}.$ Types with borings < $d_{min},$ however, can be supplied.

Moment of inertia and weight (mass) are calculated with reference to the largest bore size.

Size	т	H _{es}	n _{max}	L	Gw	D _{G1}	T _{A1}
	Nm		1/min	10 ⁻³ kgm ²	kg	mm	Nm
14	12,5	98 SH A	13000	0,006	0,042	2 x M3	2
19	17	98 SH A	10000	0,036	0,158	2 x M6	11
24	60	98 SH A	7000	0,15	0,304	2 x M6	15
28	160	98 SH A	6000	0,33	0,505	2 x M8	32
38	325	98 SH A	5000	0,96	0,934	2 x M8	38
42	450	98 SH A	4000	4,92	3,8	2 x M10	84
48	525	98 SH A	3600	8,26	4,9	2 x M12	145
55	685	98 SH A	3150	19,15	10,2	2 x M12	145
65	940	98 SH A	2800	30,72	13,7	2 x M12	145
75	1920	98 SH A	2350	66,68	21,34	2 x M16	295

To continue see next page

04.2023

EN Tech Paper

Elastomer Jaw Couplings RINGFEDER[®] GWE 5106

Transmissible torque T [Nm]

Size	Ø5	Ø6	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø30	Ø35	Ø40	Ø45	Ø50	Ø55	Ø60	Ø65	Ø70	Ø80	Ø90	Ø95
											Nm										
14	3,7	4,4	5,9	7,4	8,8	10,3	11,8														
19		12,6	17	17	17	17	17	17													
24				29	34	40	46	57	60	60											
28				46	55	65	74	92	116	139	162										
38					66	77	88	110	137	165	192	219	247								
42						139	159	198	248	298	347	397	446								
48							233	292	364	437	510	525	525	525	525						
55											510	583	656	685	685	685	685	685			
65											510	583	656	728	801	874	940	940	940		
75											783	895	1007	1119	1231	1343	1455	1567	1790	1920	1920

Explanations

d ₁ ;d _{2min}	=	Min. bore diameter d ₁ /d ₂
d ₁ ;d _{2max}	=	Max. bore diameter d_1/d_2
d _{1k} ;d _{2kmin}	=	Min. bore diameter d_1/d_2 with keyway acc. to DIN 6885-1
d _{1k} ;d _{2kmax}	=	Max. bore diameter d ₁ /d ₂ with keyway acc. to DIN 6885-1
C ₁	=	Guided length in hub bore
D ₁	=	Outer diameter

- **H** = Clearance diameter
- H_3 = Length of damping module
- I = Distance between center screw hole and hub end
- **K** = Distance shaft axis clamping screw axis
- K₁ = Clamping length
- L = Total length
- L_3 = Length

- \mathbf{T} = Transmissible torque at given T_A
- Hes = Hardness of the elastomeric spider
- **n**max = Max. rotation speed
 - = Total moment of inertia
- Gw = Weight

J

- DG1 = Thread
- T_{A1} = Tightened torque of clamping screw D_{G1}

Technical InformationHubs up to size 48 made of aluminum, from size 55 made

of steel

Ordering example

Series Size	Bore diameter d ₁	Bore diameter d ₂	Spider hardness (optional) ¹⁾	Spider bore d _{bz} (optional) ¹⁾	Further details	
GWE 5106-42	40	41	92 SH A	42	*	

¹⁾ If a different spider hardness is selected, the detailed technical data for the sprockets must be observed.

See chapter "Elastomer Jaw Couplings RINGFEDER® GWE Technical description" in Product Paper & Tech Paper "RINGFEDER® Elastomer Jaw Couplings"

* Keyway

Further information on

RINGFEDER® GWE 5106

on www.ringfeder.com

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right carry out modifications at any time in the interests of technical progress.

